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The present paper concerns formal solutions of the wave equation and of elastici~ 

theory equations which differ substantially from zero only in the neighborhood of some 

surface. Physically, such solutions correspond to a wave field whose intensity is markedly 
different from zero only near this surface. The reflection and refraction of such waves 

can be considered, 

The frequency UI is assumed to be high. All of the arguments to follow are based on 

the parabolic equation method [I J. 

1, Ths rcrlrr CIIQ~ Derivrtfon of thr prrrbolic @qultlOU. 

Let a wave process be described by a wave equation with the variable velocity b, 

Further, in the neighborhood of some smooth surface 3 let the function u be of the 
form 

U - exp {- iw [t - z (N)Ij V(M, 4 O-00 U.2) 

Here v is a function which differs markedly from zero only near s and varies slowly 
as compared with the factor exp {- 2 W [$ --‘T(M) ] 1, and ‘Q(M) is some function of the 

point Mt X, @. 2. ). 
Examining the case where S coincides with the plane a z 2, and where 

b (M) = b (z), b’ (zo) = 0, b”(d>& x@‘W = +& v == v (2, 0) 

we readily see that solutions concentrated in the neighborhood of Z= Z, do, in fact 
exist: the domain where v is markedly different from zero is of the form 

z-- zo=q+)* - --pqorn/S), if V=o(i) 
By analogy with this special case. we can assume here that the domain where 

v- Q (1) is of the form 

Here V is the distance along the normal from s taken together with its sign. Further, 
in the “boundary layer”’ 1 v 1 = 0 (o-V*) we set 
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Here a/as,, a/a S2 represents differentiations tangentially to s. Let us impose on 

s a coordinate grid consisting of the curveS T(M) = const, ME 8 and the curves ortho- 
gonal to them, We shall assume that the resulting coordinate grid a, 7 is regular. In 
the neighborho& of s we introduce Curvilinear coordinate in accurdance with Formula 

x = x (a, z) + vn (a, z), x = x (2, y, 2) P-3) 

Here X = X (Ct. 7 ) is the parametric representation of the surface s’, n = n (CL, T) 

is the unit normal to s at the point CL, T; v is the distance of the point (X,y, z ) = X 

from s. We shall assume that v is of a different sign to each side of 3, 

We shall make use of the following expression for the Laplacfan; if in the curvilinear 
coordinatesQ I, iJ2 ,cf , an element ds is given by 

then 

The matrix 11 fP 4 11 is inverse to the matrix il II. Gi j 

In the case of the coordinates C&T, v the matrix 

Substituting Expression (1,2) into Equation (1. f) we obtain 

Let us make use of Formulas (1.5) and (1.6), assuming that 

ln the left-hand side of Formula (1.7) the principal termS are those of orders 02* o%, 

0. Equating terms with o* and &*,to zero, we obtain, reSpectiVely 

These equations mean that on the surfaces the lines along which the parameter 7 
varies (i e, the linesCf,= const) are rays, i. e. exrrema of the Fermat integral J’r” d.3, 
Thus, the Surface 3i.s a “weave” of rays- something which might have been expected, 
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Finally, we equate to zero the terms of order W to obtain 

E + 2i&“V, + -!& -$ (@ G=) V + (9 (a, 7) v202v = 0 Ii.@ 

where 

d;,(a,z)=-* _ + 
I 

4 (X,* n,) (XV u,) + 3 I x, I2 I n7 I8 

V-O Ix,121X1i* 

2, The 6CI&1&r CI6C. Solutfan of the parabolic equation. Asis 

common in problems of this tvpe. we substitute variables; 

where ji is a function to be determined, 

For the new required function we obtain 

In order to guarantee separability of the variables it is sufficient for us to equate the 
expression in square brackets to a constant. This yields a linear second-order equation 

for determining $ {cl, 7). 

Let this constant (*) be - 1: 

The substitution 

9 
1 

= 
CT P (a, ~1 

allows this equation to be written as 

; + F (a, q = +, 
(G=L, Q, (u, *I 

F (a, 7) = 7 - - 

(CT*)2 (2.3) 
The general solution of this Eq. is 

W) = (& 

t/t 

%?h (2) Yk (-9 (24 
* 

Here g1 ,y, is any pair of linearly independent solutions of Eq, 

y” + Fy = 0 

It can be shown that the determinant of the positively defined matrix 11 Uik 11 is related 

to the Wronskian of the solution (PI t &I3 ) by Expression 

det il aik II 

(YIYZ’ - &‘Ys)” = 
1 

When relation (2.2) is fulfilled the variables in Equation (2.1) become separable and 
we obtain 

TY = Z (5) fiexp (- + its Pips &) 

Here Z(c) is the solution of 
2” + (h - 5”) 2 = 0 

* The assumption that CT= - 
d 

1 does not limit the generality of our 
> 0 the solution is not concentrated in the neighborhood of V = 0, while 

drops outof the final formulas. 
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The equation for zis Weber’s classical equation. It has a solution which tends to zero 

at infinity if and only ifh = 272 + 1, rl= 0, 1,2,. , . In this case 

2 = Zn (5) = e=p (- X2) H, (5) (2.5) 

where H,(c) is the n- th Hermite polynomial. 

Collecting the above formulas, we obtain Expression 

x expq H, (5) @-ioN-*) fn = 0, 1, 2, . . .) P-6) 

Here U (CL) is an arbitrary function ofa, and @ is given by Formula (d. 4). Solutions (2.6) 
are precisely the quantized- thickness wave film type solutions we have been seeking, 

For1 c I\< 62~2 f 1 khe function (2.5) oscillates; for ) 5 ) > -r/an -I- 1 - it tends 
monotonously to zero. 

Thu%j51==@n+ 1 is the arbiirary thickness of the domain or “wave film” where 

the oscillations occur. Substituting for 5 its expression, we find that the thickness of the 
wave film is “quantized” and can assume values of the form 

(n== 0, 1, 2, . , .) (2.7) 

3, The energy conrervrtton f&w, Reflection and rrfrrotios of 
wave film type WIVI:, 1. For waves of this type, the energy propagates along 
the rays in the first approximation, 

Let us elaborate this statement. In the case where the wave process is described by 

Equation ( 1. l), the energy density is of the form 

The bar denotes the complex conjugate. 
Let us consider the enerG dE confined in the small volume 

a, < u < a0 + da, t < z < 1 + dz, - v, < v f vo, vg = 0 (1) (3-Q 

Here t is time. In computing d,?? we make use of Expression (2.6). In the small 
moving volume (2. 8) as W --)= we consider only the principal energy term, which gives 

Making use of the fact that 
the integration limits by ;fo3, we arrive at the Formula 

and replacing 

This expression depends solely on the ray. Thus, the energy in moving volume (2.8) 

does not change when this volume moves along rays with the wave velocity b. 
2. Waves of the wave film type can be reflected and refracted. The reflected and 

refracted waves are defined unambiguously and are also waves of the wave film type. 
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Let some surface 2 be struck by a wave of the wave film type. We assume that c 

and the surface S intersect at nonzero angles. If the classical boundary conditions 

ujn = 0 for [au / d?& = 0, are fulfilled on the surface c, then one wave film 

will not satisfy a boundary condition of this type. 

The reflected wave will be sought on the basis of the fact that the sum of the incident 
and reflected waves satisfies the boundary condition, i. e. that 

- b+ Pj’] 0Xp 3 H,j eXp [- i0 (t - rj)] 1, = 0 

The quantities referring to the incident and reflected waves are denoted by the sub - 

script 1 and 2 respectively, 

Let us limit ourselves to the boundary condition u lz = 0; the case of the boundary 
condition [ a u/ a n ] 

c 
= 0 can be analyzed in similar fashion. 

First, in order for the Expression ( u1 + & ) 1 .c to be capable of going to zero, it is 
necessary that the most rapidly oscillating terms coincide. 

Let U be the intersection of S and c and let .4 be the family of lines on c ortho- 
gonal to 0. We shall assume that one and only one line .4 passes through each point 

on C near U. 
Coincidence in principal terms of the most rapidly oscillating factors in the express- 

ions for 9 and & requires that 

~l~ll = %Im 
s I,=y, 

Here a TJ / aa is the derivative of Tj along the arc of the curve a, 
These conditions are equivalent to the fact that the surfaces sj of the incident and 

reflected wave films intersect c at equal angles, i, e. the angle of incidence of wave 
films is equal to their angle of reflection. 

Thus, the factors ex,p* [- l/# IHnj (ii) (j = 1, 2) coincide if rtl= Q and 

a& / d,? = acs / al Ia (Our statements are valid to within the principal terms. ) 
Eq. at / al = 35s / 81 lois equivalent to 

4% (a, 7) = * 6% 2) 10 (3.2) 
Next, we equate Expressions 

Here a is the arc length along the curve a as measured from 0. Making use Of the 

fact that there exist the finite limits 

lim (cj” /oZ2) I* Cl 

we can readily find a $2 / a 7 1 Q from (3.3). 

Thus, the function Q2 and its first derivative are known on U. We recall that &is the 
solution of an ordinary differential equation of the (2.2) type along the reflected ray. 
Specification of the initial conditions for this equation determines its solution, i. e. the 
function $n, unambiguously. 

Now only~ those factors which are constant in the first approximation throughout the 
thickness of the film differ in Expression for & and i/z. Equating them with the oppo- 
site signs, we determine xn (cl) unambiguously. The refraction of wave films can be 
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considered in analogous fashion, 

4. PrOp&gAtiOn of clr:tfC 08Cill8tiOXl8 of ths wave film type, 
Without making any fundamental alterations, we can use the same technique to find 
waves of the “wave film” type for transverse elastic oscillations. 

We introduce the same coordinates a, 7, v as in Sets, 1 and 2. We assume from the 
start that the wave film surface sis “blanketed” by rays. 

Let an element of length in the curvilinear coordinates :;*, $, qA, be given Oy (1.4). 

Further, let epl, (p2, cf’ b e components of the displacement vector in these coordinates; 

more 
8 

recisely, if elastic deformation shifts (*)M(gl. q”, q3) to the position 

M(p , a”: q3’), then qpj = yj’ - @ (j = ‘f,2, 3). 
equations in the coordinates Q~ ’ is of the form 

The system of elasticity theory 

-- Qy& l/c; $$ i 0 (S = I, 2, 3) i4.V 
The recurring indices denote summation from 1 to 3, 

Here 0 are the components of the stress tensor related to the displacement vector 

by the ex$lessions (Hooke’s law) 

We shall assume that the Lamt parameters h and 1-I are smooth functions of the coor- 
dinates and that the displacement vector is of the form 

U = ~c-i~P-+M)I lo, 110 j = 1, IO A_ ‘\iZ, l&s 

(transverse waves); hence, 
(72 = 1 x, 1 _Fre-~~[t-w~l, cpl == ‘p” = 0 (4.3) 

Let us assume that the derivatives of v are of the order 
a r+k+m 

ad ark a9 
T/’ = 0 (&m) 

Substituting the expressions for cp 1 t cp2, CD3 from Formulas (4,3) into Formulas (3.1) 

and (3.2) (the components of the tensors Gi j, G ’ J are of the form (l-6)), we find that 

terms of orders ctP, ~s/~, CO drop out of the firstland third equations. More precisely, 

left-hand side of the first Eq. is of the order O(l), while the third is of the order 
0 (&lP). 

The principal terms in the second equation are of order W. Equating them to zero, we 

arrive at the parabolic equation 

v,, + y G”V, + f.? ~(G~~I/~~G~~;v+(~~I~--G”~V-* 
P lfGG,, +r 

This equation is solved in exactly the same way as Eq. (1. s), The final Formulas are 

U = /z/$Iexp [-iv \P$2&_&$] x 

(4.4) 
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$(a,* 7 ) can be found from Eq. 

As in the scalar case, we can consider reflection and refraction of wave films of the 

type just investigated. For waves of the (3.4) type the energy propagates along “rays” 
in the same sense as in the scalar case. 
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